# **Putting Vacant Buildings to Sleep**

Alan Meier

### UCD Energy and Efficiency Institute & LBNL

Thanks to UCoP's Carbon Neutrality Initiative, DOE, EPA, CEC Thanks also to:

Lisa Slaughter, Alex Sloan, Sadia Gul, Samanvith Reddy, Josh Morejohn, Nico Fauchier-Magnan, Tianzhen Hong, John Elliott



IR photo of a UCD A/V rack in an empty classroom



- 1. Origins of this topic
- 2. Sleeping buildings research at UC Davis (mostly)
- 3. How the world changed and this project is pivoting

### ostly) pivoting

## Origins

### 2001 Appliances: Standby power use

2014 Buildings: when nobody was there or perhaps sleeping

### 2017: UC Davis

Standby Power (2001):

- Electricity used by appliances when switched off or not performing primary function
- 5 10% of residential electricity use
- 1% of global CO2 emissions





"Vampires" – external power supplies, term arose because they have 2 teeth and suck electricity in the night (origin unknown)

# Buildings Have "Standby" Power Use, Too

Smart meter data from 25,000 California homes



In about half of existing homes, >40% of the electricity consumption is a result of constant loads.

Tip: Use your smart meter to view your 3AM consumption

**Energy and Efficiency Institute** 



A nothing-special commercial building at LBNL, with continuous loads responsible for 60% of annual electricity use

## **Initial Target: Saving energy in buildings** when nobody was in them

- >Some buildings are vacant for more hours than they are occupied (nights + weekends + vacations + holidays)
- >> No occupants there to complain
- More aggressive measures were possible
- >New approaches to saving energy in vacant buildings?
- >Clues to waste in occupied buildings?

### **Relationship Between Occupancy Level** and Electricity Use



### Vacant

Occupancy level  $\rightarrow$ 



100% occupied

## The Problem at UCD

### Ratio of Vacant Power to Occupied Power

Electricity use in most UCD buildings never falls below 50% of their occupied levels, even during nights, weekends, holidays, or pandemics.



|     |     | 9   | )4% |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|
|     |     | 9   | 94% |     |     |     |     |
|     |     | 90  | 1%  |     |     |     |     |
|     |     | 90  | 1%  |     |     |     |     |
|     |     | 88  | %   |     |     |     |     |
|     |     | 879 | 6   |     |     |     |     |
|     |     | 879 | 6   |     |     |     |     |
|     |     | 879 | 6   |     |     |     |     |
| 85% |     |     |     |     |     |     |     |
|     |     | 84% |     |     |     | 8   |     |
|     |     | 83% |     |     |     |     |     |
|     |     | 82% |     |     |     |     |     |
|     |     | 82% |     |     |     |     |     |
|     |     | 82% |     |     |     |     |     |
|     |     | 80% |     |     |     |     |     |
| 79% |     |     | -   | -   |     |     |     |
|     | 74  | 4%  |     |     |     |     |     |
|     | 70% | 6   |     |     |     |     |     |
|     | 69% | 6   |     |     |     |     |     |
|     | 69% | 6   |     |     |     |     |     |
|     | 67% | £   |     |     |     |     |     |
|     | 67% | U.  |     |     |     |     |     |
|     | 67% | 6.  |     |     |     |     |     |
| %   |     |     |     |     |     |     |     |
| 6   | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
|     |     |     |     |     |     |     |     |



Buildings with labs have nearly constant power use

AVG Vacant Power / AVG Occupied Power

## **Campus Shutdown During the Pandemic**



90% reduction in occupancy, but only 15% reduction in electricity

### Savings since 3/17/2020

Savings to Date (kWh) 3,177,869

Savings to Date (%) 15

Savings to Date (kLbs) 1,688

Savings to Date (%) 2

Savings to Date(tonh) 480,415

Savings to Date (%) 24

Source: UC Davis

### Case Study: Giedt Hall



Mostly lecture halls inside

### Building Example - Giedt Hall



### **Current Demand**





Electricity load profile for Giedt Hall – a building with mostly classrooms – during a week where the Facilities Department shut off the HVAC during the weekend.

## What's On? (examples from UCD & LBNL)

### Miscellaneous Electrical Loads

# MELS

MELs are responsible for about 1/3 of electricity use in US buildings

- >> Uncontrolled HVAC
- >> Hot water circulation pumps
- > Computers, screens, printers, etc.
- » Network equipment
- Drinking fountains and dispensers
- >> Elevators
- >> Lights
- > Water heaters (electric)
- >> AV equipment
- » Parking lot lighting
- >> Fan coil units
- >> Vacuum pumps >> Vending machines and coffee makers

### What's on in Giedt Hall?

### Giedt Hall Nightly Load Estimate (kW)



### Audio-Video Equip

33.1%



# A/V Equipment









### **Evolution of Audio/Video Rack Power Use**







| Rack<br>Generation:      | GEN 1       | GEN 2  | GEN 3    |
|--------------------------|-------------|--------|----------|
| Control System:          | Smart Panel | Extron | Crestron |
| Full Use (Watts):        | 100         | 110    | 245      |
| Unused (Watts):          | 60          | 90     | 220      |
| Unused as % of full use: | 60%         | 82%    | 90%      |





| GEN 4A   | GEN<br>4B |
|----------|-----------|
| Crestron | Crestron  |
| 345      | 680       |
| 325      | 615       |
| 94%      | 90%       |

### Source: Alex Sloan

# **Reducing A/V Rack Power Use is Difficult**

>> Many components

- But few are frequently used
- >> Few are able to "sleep"
- >> Switching on is more challenging than switching off
- >> IT Dept discourages switching off the racks
  - Failure to reboot
  - **Reduced lifetimes?**
  - No incentives

**Digital Media Matrix Receiver** 94W

### We need more robust solutions to reliably switch off—and then on—integrated systems





### **Network Equipment Can't Power-Scale**

Ethernet switches are key components in networks

Data throughput scarcely affects power consumption

100% reduction in utilization reduces power use only 3%

Wifi routers have similar performance





## **Saving Energy in Buildings When Nobody is** in Them

- Determine when the building is vacant 1.
- 2. Signal equipment to enter vacancy mode
- 3. Signal equipment to "wake up" when somebody enters the building

# **Inferring Vacancy**

>> Vacancy and Occupancy are different

- Occupancy is continuous but Vacancy is binary
- Occupancy can be sensed but Vacancy must be inferred
- > We created a "vacancy inference engine" to estimate probability that the building is vacant
  - Inference draws upon multiple sensors (wifi, motion, CO2, electricity, etc.)
- Sensor fusion techniques used to calculate probability of vacancy

## Vacancy Inference Platform





### **Devices with vacancy mode**

A/V Equipment

### Network Equipment

**Access Points** 

Misc. Plug Loads

Lighting

**+OTHERS** 

## Adding Vacancy Modes to Equipment to Save Electricity

- Significant equipment modifications will be required
  - New, lower power "vacancy modes" when the building is vacant
  - Communications capabilities to receive vacancy signal
- Some devices are nearly there
- >Others need retrofits



End use devices

## **The Pandemic Pivot?**

- Senergy use while buildings are vacant is a more visible problem now, but ...
- »New task is achieving efficiency in lowoccupancy or variableoccupancy buildings



Vacant

Occupancy level  $\rightarrow$ 

# <sup>3%</sup> 100% occupied

### **Future Work at UC Davis**

>> How much energy can be saved?

- Audit buildings to determine what's actually on during vacant periods
- Manually place them in "vacancy mode"
- Observe energy savings

Improve vacancy inference engine and transfer to Facilities Office

Develop vacancy modes in equipment

- A/V equipment
- Network equipment
- Pumps and water heaters

### Conclusions

- > Electricity use in buildings has become de-coupled from the amount of services they provide
  - MELs are responsible for much of this de-coupling
- > We need new strategies to make buildings more responsive to the number of people in a building and the services they actually need
- > These strategies will require novel applications of sensing, controlling, and design of equipment