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Figure 2. Raw vs. fitted cumulative probability distribution for # of active WiFi connections during vacancy periods

Energy and Efficiency Institute in a UC Davis building. 1= vacant, 0 = occupied. This is used to generate the vacancy of probability for this input.



UC Davis Office of Naval Research Collaboration

UC Davis was selected as one of six universities to receive multi-

million dollar funding from the U.S. Office of Naval Research to

conduct energy research and train military personnel as part of As part of the NEPTUNE program, UC Davis is undertaking 8 energy-
related research projects. Each project will help the Navy reach its

energy goals and will employ and train undergraduate and graduate
level military-affiliated students; including veterans, active duty,
reservists, ROTC, and military dependents.

the Navy Enterprise Partnership Teaming with Universities for
National Excellence (NEPTUNE) program.

Purpose

« Studies of Electron Transfer in Mixed-Valent Systems to

Improve Desigh of Non-Aqueous Redox Flow Batteries
to improve energy conservation, generate renewable energy, and (PI: Louise Berben)

NEPTUNE aims to help the Navy and Marine Corps discover ways

implement energy-efficient technologies, while giving active duty . Smart Energy Management for Unmanned Aerial System

Operation in Complex Military Missions
themselves in university-level research. (Pls: Xinfan Lin and Zhaodan Kong)

military, military students, and veterans the chance to immerse

« Scaling a Building Energy Audit Tool
(Pl: Josh Morejohn)

U.S. Office of Naval Research - Adaptive Sensor-Based Lighting for Security Applications
(Pl: Michael Siminovitch)

« Microchannel Heat Exchanger Designs for Power Generation
and Cooling
(Pl: Vinod Narayanan)

« Modular Solar-Battery Microgrid Utilizing 2nd Life Electric Vehicle
DTIINE: > & S Batteries with Advanced Energy Management Control
g e ¥ e T (Pl: JaeWan Park)
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Life Cycle Environmental Impacts of Light Duty Electric Vehicles UUCDAVI

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

An Institute of Transportation Studies Program
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Life Cycle GHG Emissions for ICEVs and BEVs
under the Reference Grid Scenario
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Source: BNEF EV Outlook 2018 (Global)
Methodology and Data Efficiency Oriented Performance Luxury Performance Sports
Vehicle Sedan Utility Vehicle . Based on the market
| | Battery Size 50-100 kWh 75-150 kWh 75-200 kWh trends, 3 vehicles
Sﬁv?ﬁgfrﬁae'ﬁf‘atﬁfﬁ‘giitveh'c'e models for their Motor Size 150 kW 300 kW 600 kW categories stand out as
Scope: Production phase and Use phase (electricity AI_E Ra”?’e 150-300 miles 250-400 miles 200-400 miles Importantl trend§. Each
consumption) Price point < $30,000 > $50,000 > $50,000 category is assigned a
Life Cycle Inventory: Vehicle teardown data, GREET Curb Weight 1600 kg 2000 kg 2600 kg representative vehicle
model, Data on Vehicles, Battery model Case Study Chevrolet Bolt Tesla Model S Tesla Model X model as shown in the
Example table.

Modeling Approach
1. Glider (Balance of Vehicle System)
— Objective: To estimate BOM and mass of materials

— Method: Combining aggregated and breakdown
(component-level) data

— Data: Vehicle teardown reports, GaBi datasets, Other
models (GREET, UCSB Automotive model)

2. Battery system

— Objective: To estimate BOM and mass of materials
for a given battery performance characteristics

— Method:
e 4 scenarios: NCA-G, NMC-G, LFP-G, LMO-G

% Cell material composition was estimated using
BatPac model (ANL) which is scaled with the
system

3. Electricity (use-phase)

— Objective: To estimate the Electricity consumption for
vehicle operation

— Method: FASTSim model by NREL is used to find
electricity consumption based on given vehicle
characteristics and travel behavior

— Data: eVMT project data from PHEV to incorporate
the naturalistic driving patterns in the FASTSIim model

4. Sensitivity Analysis

— Objective: Estimate the response of per-mile carbon
intensity to different scenarios

— Method:

4 grid mix scenarios: WECC and US national
averages with and without a $25 carbon tax

« Different utilization rates as privately owned vehicles,
and low and high shared automated vehicles
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Next Steps

* Add a hybrid electric vehicle model for a more robust
comparison.
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