

Pathways to Hydrogen Production Using Solar Heat

UC Solar Thermal Symposium Davis, CA November 15, 2019

PRESENTED BY

Anthony McDaniel(amcdani@sandia.gov)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2019-12068 PE

This presentation does not contain any proprietary, confidential, or otherwise restricted information

H2@Scale: Enabling Affordable, Reliable, Clean, and Secure Energy Across Sectors

2 **Ac**

Transportation & Beyond

Large-scale, low-cost H₂ from diverse domestic resources enables an economically competitive and environmentally beneficial future energy system across sectors

Materials innovations are key to enhancing performance, durability, and cost of H₂ generation, storage, distribution, and utilization technologies key to H2@Scale

*Illustrative example, not comprehensive

https://energy.gov/eere/fuelcells/h2-scale

DOE's Hydrogen Production R&D Strategy 3

Fossil fuels, biomass and waste

Development

- Water electrolysis
- Solar water splitting
- Co-production of value-added products

Less than \$2/kg

utilizing diverse, domestic feedstocks

through Consortia

Advanced watersplitting materials

Innovative Concepts

Ex.: Leveraging biomass/waste for H₂ production

International Organization: TASK II—Solar Chemistry Research

Metal cation is redox active element in two-step cycle

TC + Electrochemistry H_2SO_4 $H_{2}O + SO_{2}$ $H_2O + SO_2$ H_2SO_4 $H_2SO_4 \leftrightarrow H_2O + SO_2 + \frac{1}{2}O_2$ (thermochemical; 800-900 °C) $SO_2 + 2 H_2O \rightarrow H_2SO_4 + H_2$ (electrochemical; 80-120 °C) Net Reaction: $H_2O \rightarrow H_2 + \frac{1}{2}O_2$

Sulfur is redox active element in two-step cycle

S. Abanades, P. Charvin, G. Flamant, P. Neveu, *Energy.* **31**, 2805–2822 (2006). R. Perret, SAND Report (SAND2011-3622), Sandia National Laboratories, 2011.

Thermochemical Water Splitting is a Simple Concept: Heat + H_2O In, H_2 + O_2 Out

6

R. Perret, SAND Report (SAND2011-3622), Sandia National Laboratories, 2011.
G. J. Kolb, R. B. Diver, SAND Report (SAND2008-1900), Sandia National Laboratories, 2008.
S. Abanades, P. Charvin, G. Flamant, P. Neveu, *Energy*. 31, 2805–2822 (2006).

- Direct storage of solar energy in a chemical bond
- Multinational efforts focused on two-step, non-volatile MO_x

⁷ STC H₂ vs. Alternative Renewable Water Splitting Technologies

STC H₂ Materials Theme: Oxygen Exchange And Transport 8

- Oxygen storage materials with a **twist**
 - Thermodynamics
 - **Kinetics**
 - Transport —
 - Gas-solid interactions
 - Solid-solid interactions
- H₂O dissociation Surface diffusion & chemistry O-atom incorporation Bulk diffusion Phase nucleation & Oxygen "storage' evolution material Materials in extreme environments Chemical bond activation High temperature and radiative flux
 - High thermal and chemical stress

9 Cycle Thermodynamics Challenge Process Economics

¹⁰ Thought Experiment: Adjacent H₂ and CSP Plants

CSP-H₂ integration increases electricity generation by 15% (relative), with lower total capital costs

https://www.energy.gov/eere/fuelcells/downloads/potential-strategies-integrating-solar-hydrogen-production-and

MO_x WS Cycle Demonstrated: From Watts to Kilowatts 11

Many different reactor designs have been explored

J. E. Miller, A. H. McDaniel, M. D. Allendorf, Advanced Energy Materials. 4, 1300469 (2014).

¹² Sandia's Flowing Particle Receiver Reactor

13 Global Initiatives Gaining Momentum

Article in March 2018 issue of Chemical Engineering (www.chemengonline.com) titled "Solar Chemistry Heats Up" written by staff editor Gerald Ondrey

		TABLE 1. RECENT SOLAR-THE	
Project (timeframe)	Partners*	Aims	
Indiref: Indirectly	Solar Institut Jülich, Hil-	Using solar thermal energy (at	
solar-heated reformer	ger GmbH, Hille & Müller	700–1,000°C) to reform CH ₄ , with	
(2016–2019)		CO ₂ and H ₂ O, into syngas	
Astor: Automized	Rheinische Fachhoch-	Using solar-thermal energy (at 800-	
thermochemical	schule Köln, Stausberg	1,400°C) to make H ₂ from reaction of	
water splitting	& Vosding GmbH, AWS-	water with metal oxides	
(2017–2020)	Technik e.K.		
Sun-to-Liquid	Bauhaus Luftfahrt, ETH	Synthesize liquid hydrocarbons from	
(2016–2019)	Zurich, IMDEA Energy,	H ₂ O and CO ₂ , via formation of syngas	
	Hygear B.V., Abengoa	and subsequent Fischer-Tropsch	
	S.A., Arttic	(F-T) synthesis	
Hydrosol: Solar ther-	CIEMAT, Hygear B.V., Hel-	Using solar-thermal energy (at 800-	
mochemical water	lenic Petroleum, APTL	1,400°C) to make H ₂ from reaction of	
splitting		water with metal oxides	
(2014-2017)			
sophia: Solar Inte-	UEA, HYGear B.V., VII,	Decomposition of steam by a	
grated pressurized	Engle, HTCeramix S.A.,	combination of electrical and high-	
nign-temperature	SolidPower	cemperature (700–800°C) neat into	
electrolysis (HTE) (2017–2017)		carbon-free H ₂ and U ₂	
Solpart: Ligh tom	CNDS Comoy Aborgoo	To utilizo colar thormal oporau to	
porature solar-heated	Bosoarch Universit	norform the calcination step used	
reactors for industrial	of Manchester EPPT	in the lime phosphate and coment	
production of reactive	comessa eurovia New	industries	
narticles	Lime Development Uni-	Industries	
(2016-2020)	versité Cadi Avvad, OPC		
Pegasus: Renewable	APTL/Certh, KIT, Baltic	Using sulfur to store energy in an	
power generation	Ceramics, Processi In-	S-SO ₂ -H ₂ SO ₄ cycle (for more infor-	
by solar-particle-re-	novativi	mation, see Chem, Eng., June 2017.	
ceiver-driven sulfur-		p. 10)	
storage cycle			
(2016-2020)			
Düsol: Sustainable	GTT Gesellschaft für	Making nitrogen fertilizers via a	
fertilizer production	Technische Thermoche-	Haber-Bosch process in which the H ₂	
from sun, air and	mie- und physik mbH,	is derived from water splitting, and	
water	aixprocess GmbH	the N ₂ from a solar-thermochemical	
(2016–2019)		air-separation process	
Solam: Solar alumi-	aixprocess GmbH, CSIR,	An effort to decarbonize the alumi-	
num smelting	NFTN, Eskom, DST (last	num smelting process using solar-	
(2015-2018)	four South African)	thermal energy	
Virtual Institute	ETH Zurich, KIT, TU	To produce CO ₂ -neutral fuels via a	
SolarSynGas: Ther-	Clausthal	thermochemical route	
mocnemical research			
tor CO2-neutral re-			
newable fuels			
(2012-2017)	One die Nedianel Leb	To develop a set of the develop	
HEST-HY: High ef-	Sandia National Labora-	to develop new methods and reac-	
ticiency solar-thermal	tories, Colorado School of	tors for operating thermochemical	
nyurogen	mines, NorthWestern Uni-	looping cycles to make H ₂ by splitting	
(2014-2017)	versity, Stanford Univer-		
	Sity, BUCKNell University,		
	AUZONA STALE UNIVERSITV	1	

Project HYDROSOL-PLANT

Thermochemical HYDROgen production in a SOLar monolithic reactor: construction and operation of a 750 kWth PLANT

Solar fuels could be Australia's biggest energy export

Solar fuels could be Australia's biggest energy export

Posted on October 16, 2015. Australasian News.

Author: Giles Parkinson

Source: reneweconomy.com.au

China Conducts Massive Synthesis of Liquid Solar Fuel

A 1,000-tonne industrialization of liquid solar fuel synthesis project has been launched in Lanzhou, capital city of northwest China's Gansu Province.

OBJECTIVES https://www.sun-to-liquid.eu/

SUN-to-LIQUID will design, fabricate, and experimentally validate a large-scale, complete solar fuel production plant

The preceding EU-project SOLAR-JET has recently demonstrated the first-ever solar thermochemical kerosene production from H_2O and OO_2 in a laboratory environment (*6). A total of 291 stable redox cycles were performed, yielding 700 standard litres of high-quality syngags, which was compressed and further processed via Fischer-Tropsch synthesis to a mixture of naphtha, gasoil, and kerosene (*7).

As a follow-up project, SUN-to-LIQUID will design, fabricate, and experimentally validate a more than 12-fold scale-up of the complete solar fuel production plant and will establish a new milestone in reactor efficiency. The field validation will integrate for the first time the whole production chain from sunlight, H₂O and CO₂ to liquid hydrocarbon fuels. http://english.cas.cn/newsroom/ archive/news_archive/nu2018/201 807/t20180709_194849.shtml

In ASTOR a reactor will be developed, which is based on the ones of the <u>HYDROSOL</u> project family. It will have a thermal capacity of 250 kW. As REDOX-material Ceroxide is used.

Reactor for thermochemical hydrogen generation in SynLight

14

Accelerating R&D of innovative materials critical to advanced water splitting technologies for clean, sustainable, and low cost H₂ production, including:

HydroGEN consortium supports early stage R&D in H_2 production

¹⁵ What Would it Take for Solar Thermal Technologies to Deliver...

Renewable H₂ by splitting the water molecule (or solar fuels in general)

- **R&D** to discover and advance functional materials
- **R&D** to discover and advance alternative cycle chemistry
 - both pure thermochemical and hybrid cycles
- R&D to develop solar reactors and synergistic system concepts (H₂+Electricity)
 - extremely high temperatures
 - high efficiency heat recuperation
 - hermetically sealed
 - CSP integration
- **R&D** to develop efficient collectors for high concentration and high temperature
- Large scale demonstrations
 - public—private partnerships
- New policies and regulation to incentivize and drive private investment

¹⁶ Nature's Thermochemical Water Splitting Process

Source: iStock

Our challenge is to develop efficient and scalable *solar*-powered reactors producing 100,000 kg H_2 /day without melting houses

17 Backup Slides

ħ

HydroGEN is vastly collaborative, has produced many high value products, and disseminating them to the R&D community.

¹⁹ Thought Experiment: High-temperature Electrolysis & CSP Single tower dedicated to providing thermal energy, multiple additional CSP towers to provide electricity H₂O

11 additional CSP towers would be necessary to supply electricity for each tower supplying exclusively heat for H_2 production

 \rightarrow No process-level integration of H₂ production and CSP

Heat and electricity provided by solar energy

Domestic Solar Resources are Capable of Supplying Entire US Demand

US consumes > 21 mb/d petroleum

Filters applied (Resource analysis by NREL):

Sites > 6.75 kWh/m²/day.

20

- Exclude environmentally sensitive lands, major urban areas, etc.
- Remove land with slope > 1%.
- Contiguous areas > 10 km².

	Land Area	Solar Capacity	Fuel Cap	Fuel Capacity	
State	(10 ⁹ m ²)	(TW)	(GW)	(mb/d)	
AZ	49.9	3.37	421	5.9	
СА	17.7	1.20	150	2.1	
СО	5.5	0.37	46	0.7	
NV	14.5	0.98	122	1.7	
NM	39.3	2.65	331	4.7	
ТХ	3.0	0.20	25	0.4	
UT	9.2	0.62	78	1.1	
Total	139.2	9.39	1,174	16.6	

• 139×10^9 m² is 1.5% of total US land area.