Industrial Processes Needing High Heat- An Overview

Vinod Narayanan University of California- Davis

UC Solar Thermal Symposium November 15th 2019

Setting the stage- US Manufacturing Energy Consumption (2014 MECS)

- NG is the predominant fuel
 - Significant part of process heat is driven by steam
- Total emissions: 1064 MMT CO₂e (16% of US total)

Setting the stage- Natural Gas use in US

5 largest NG consuming states: TX (14.3%) CA (7.8%) LA (5.9%) FL (5.1%) PA (4.7%)

eia Source: U.S. Energy Information Administration, Monthly Energy Review, Table 4.3, June 2019

U.S. natural gas consumption by sector, 1950-2018

Industrial processes used 10.04 trillion cubic feet (~34%) of natural gas 2018

Setting the stage- Top thermal energy consumption industries (TBtu)

5

	Net	Natural
Subsector and Industry	Electricity	Gas
Chemicals	458	2496
Petroleum and Coal Products	167	1072
Petroleum Refineries	160	1000
Primary Metals	433	688
Food	247	572
Other Basic Organic Chemicals	57	474
Iron and Steel Mills and		
Ferroalloys	204	443
Paper	191	436
Plastics Materials and Resins	58	424
Nitrogenous Fertilizers	13	383

Western region accounts for $\sim 12\%$ of total industrial natural gas consumption

*Source for US and western region: 2014 MECS data

**Source for CA data: California Energy Commission, 2019, "Research Roadmap for Advancing technologies in California's Industrial, Agriculture and Water Sectors," Energy Research and Development division Final Project Report CEC-500-2019-016

		Net	Natural
MCSICITI CCITSUS ICSTOIL	Subsector and Industry	Electricity	Gas
	Petroleum and Coal Products	26	261
	Petroleum Refineries	25	249
	Food	41	135
	Chemicals	39	63
	Paper	34	61
	Fruit and Vegetable Preserving and Specialty		
	Food	12	60
	Nonmetallic Mineral Products	20	47
	Primary Metals	47	35

	Subsector and industry	Net	Natural
₿.	O&G extraction and mining support	22 02	230 54
nia	Petroleum and coal products	44.04	200,04
Califor	manufacturing	28.90	184
	Chemicals	I.34	39.3
	Food and beverage	20.24	37.7
	Primary metals	0.51	9.7

US*

Oil and Gas Extraction (upstream)

- driving pumps to extract hydrocarbons and to reinject water;
- Enhanced oil recovery- thermal injection (40% of CA oil)
- heating the output stream to allow separation of the oil, gas and water;
- powering compressors and pumps for transporting oil and gas through gathering pipelines to processing plants;
- driving turbines to generate the electricity and heat needed for on-site operations

Sources: IPIECA, 2013, Saving Energy in the oil and gas industry

Solar Enhanced Oil recovery could displace 20% of NG use for EOR in CA: Kern County 21Z Solar Project (GlassPoint Solar)

Petroleum Refining (Downstream)

Typical refinery energy and product flows

Source: Appendix - McMilan et al., 2016, Generation and use of thermal energy in the US Industrial Sector and Opportunities to Reduce its Carbon Emissions, NREL/TP-6A50-66763, INL/EXT-16-39680

- Fractional distillation
- Rearrangement of HC molecules- Conversion of paraffins to aromatics (dehydrogenation and aromatization), longer chains to aromatics and branched HCs (isomerization); goal- higher octane value, longer chains broken into smaller molecules (cracking)

Chemical Manufacturing (2004 data)

C	A chemicals industry	y (2000)		
SIC	Sector	Natural Gas (TBtu)	Electricity (GWh)	Primary Energy (TBtu)
281	Inorganic Chemicals	5.28	1397	15.6 (32%)
282	Plastics & Synthetics	1.34	155	2.5 (5%)
283	Drugs	2.07	878	8.6 (18%)
284	Soap & Cleaners	0.43	154	1.6 (3%)
285	Paints	0.04	64	0.5 (1%)
286	Organic Chemicals	0.11	44	0.4 (1%)
287	Agricultural Chemicals	0.15	68	0.7 (1%)
289	Other	0.54	141	1.6 (3%)
	Unclassified	9.15	1008	16.6 (38%)
Total		19.13	3909	48.13

- Chemical processing -Two main steps-
 - Primary synthesis
 - Separation and purification (fractional distillation)
- 40% of heat in chemical plants is delivered using steam
- Final products- soaps, cleaners, bleach, cosmetics, dyes, pharmaceuticals, plastics
- Intermediate products plastics, rubber, textiles, apparel, paper
- CA- pharmaceuticals, soaps and cleaners, inorganic chemicals make up 75% of CA industry

C. Garitsky, E. Worrell, 2004, Profile of the Chemicals Industry in California-California Industries of the Future Program, LBNL 55668

Petrochemicals

Lime (CaO) production

Source: Appendix - McMilan et al., 2016, Generation and use of thermal energy in the US Industrial Sector and Opportunities to Reduce its Carbon Emissions, NREL/TP-6A50-66763, INL/EXT-16-39680 CaCO₃.MgCO₃+ heat --> 2CO₂ + CaO.MgO (dolomitic linue)

- Lime is used as an alkaline agent
- Iron and steel, pulp and paper, treatment of flue gas and water; key ingredient of cement
- Large rotary kiln at 900-1200 °C (endothermic)

Cement Production

- Grinding a mixture of limestone and clay or shale to make a fine "rawmix"
- Heating the rawmix to sintering temperature (up to 1,500°C) in a cement kiln heat source at 1800-2000 C
- Kiln fired by combustion of coal, petroleum coke, heavy fuel oil, natural gas, landfill off-gas, and oil refinery flare gas (used tires!)
- Radiation heat transfer dominant
- Grinding the resulting clinker to make cement.

Source: Appendix - McMilan et al., 2016, Generation and use of thermal energy in the US Industrial Sector and Opportunities to Reduce its Carbon Emissions, NREL/TP-6A50-66763, INL/EXT-16-39680

Fertilizer Production (Ammonia synthesis)

Typical fertilizer plant energy and product flows

- 9.4 million tons in US (2015); accounts for 88% of NH₃ use
 - Constituents- natural gas- for H₂; air for N₂

Source: Appendix - McMilan et al., 2016,

Generation and use of thermal energy in the US Industrial Sector and Opportunities

to Reduce its Carbon Emissions,

NREL/TP-6A50-66763, INL/EXT-16-39680

Food Processes that Use Heat

Pasteurization Type	Typical Product	Typical Storage	Temperature	Holding Time
Batch, vat	Milk	Refrigerated	145°F (62.8°C)	30 min
"	Viscous products, or products with more than 10% fat or added sweetener	n	150°F (65.6°C)	30 min
u	Egg nog, frozen dessert mixes	"	155°F (68.3°C)	30 min
Continuous, high temperature short time (HTST)	Milk	"	161°F (71.7°C)	15 sec
"	Viscous products, or products with more than 10% fat or added sweetener	'n	166°F (74.4°C)	15 sec
n	Egg nog, frozen dessert mixes	"	175°F (79.4°C)	25 sec
n	n	n	180°F (82.2°C)	15 sec
Continuous, higher heat shorter time (HHST)	Milk	"	191°F (88.3°C)	1 sec
"	"	"	194°F (90°C)	0.5 sec
п	п	n	201°F (93.8°C)	0.1 sec
n	n	n	204°F (96.2°C)	0.05 sec
n	n	n	212°F (100°C)	0.01 sec
Continuous, Ultrapasteurization	Milk and cream	Refrigerated, extended storage	280°F (137.8°C)	2 sec
Aseptic, ultra high temperature (UHT)	Milk	Room temperature	275-302°F (135-150°C)	4-15 sec
Sterilization	Canned products	n	240°F (115.6°C)	20 min

- Pasteurization & sterilization
- Concentration

Concluding thoughts

- Can solar thermal displace a significant fraction of the NG needed for industrial needs?
- What are the competing technologies?
- Which application is the "lowest hanging fruit" for solar thermal?

