

Concentrating Solar-thermal Power Research and Development Program

UC Solar Thermal Symposium November 15, 2019; Davis, California

Dr. Avi Shultz

Program Manager

Solar Energy Technologies Office, US Department of Energy

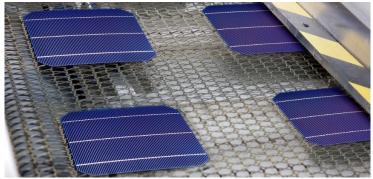
energy.gov/solar-office

Solar Energy Technologies Office

WHAT WE DO

The Solar Energy Technologies Office funds early-stage research and development in three technology areas: photovoltaics, concentrating solar power, and systems integration with the goal of improving the **affordability**, **reliability**, and **performance** of solar technologies on the grid.

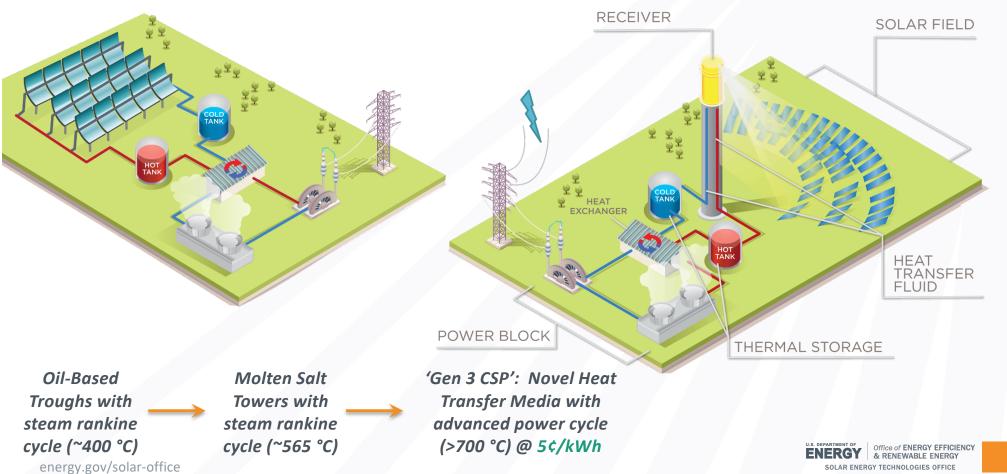
HOW WE DO IT


Cutting-edge **technology development** that drives U.S.s
leadership and supports a growing
and skilled workforce.

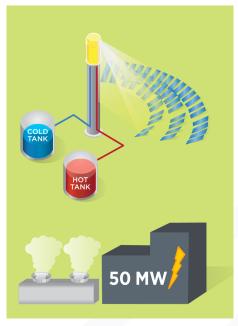
Research and development to address integration of solar to the nation's electricity grid.

Relevant and objective technical information on solar technologies to stakeholders and decision-makers.

Solar Technologies: Photovoltaics, Concentrating Solar-Thermal Power

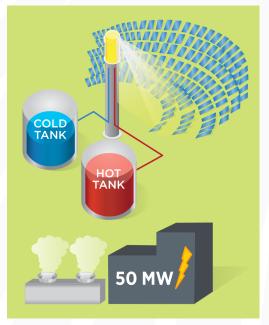

Concentrating solar-thermal power (CSP) technologies use mirrors to reflect and concentrate sunlight onto a receiver where it is collected and converted into heat. This heat energy can be stored and used to produce electricity whenever it is needed.

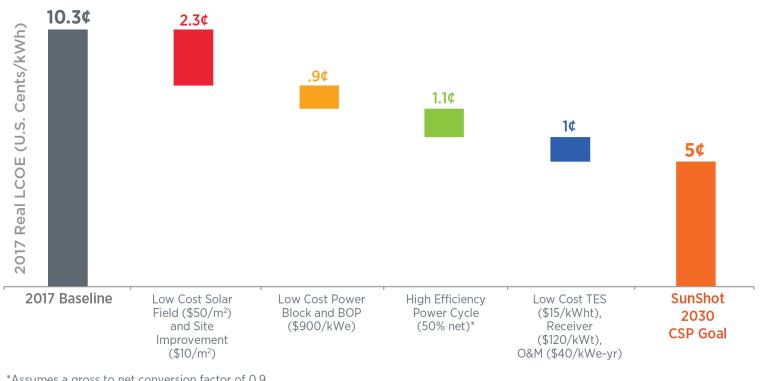
n sunlight miconductor


Photovoltaic (PV) technologies absorb energy from sunlight and convert it directly into electricity through a semiconductor material, such as silicon. Individual PV panels/modules are connected together to make large arrays.

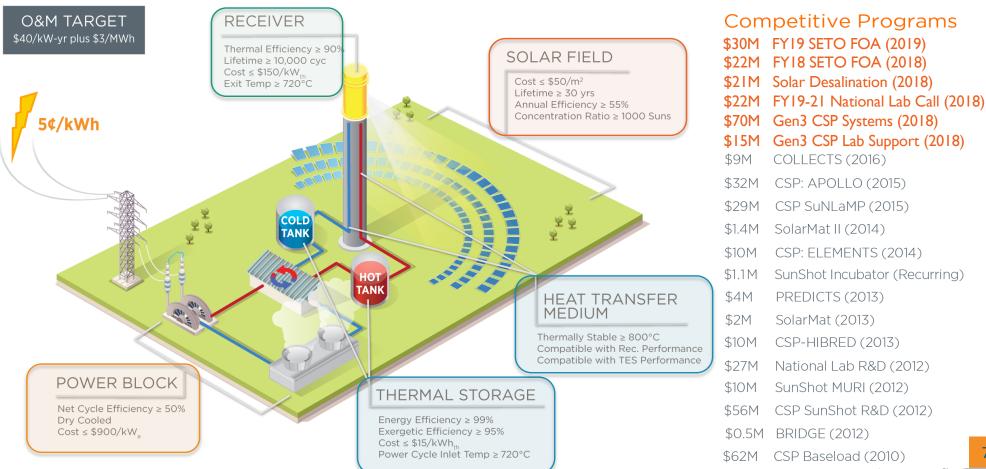
CSP with Storage is Solar Energy On-Demand

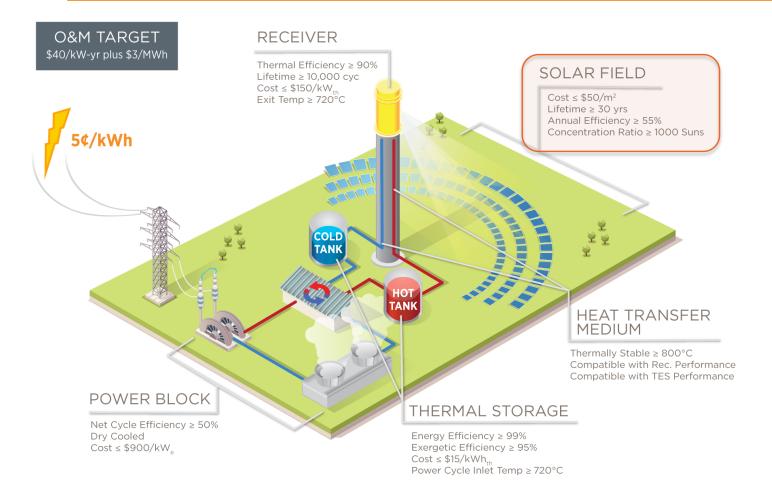
Thermal Energy Storage Enables Flexible Designs


'Peaker'
(≤6 hours of storage)


By choosing the size of the solar field and thermal energy storage, the same CSP technology can be configured to meet evolving demands of the grid

'Baseload' (≥12 hours of storage)

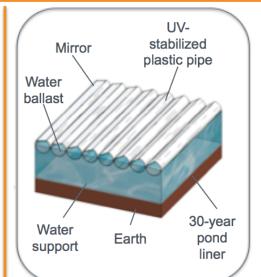



A Pathway to 5 Cents per KWh for Baseload CSP

CSP Program Technical Targets

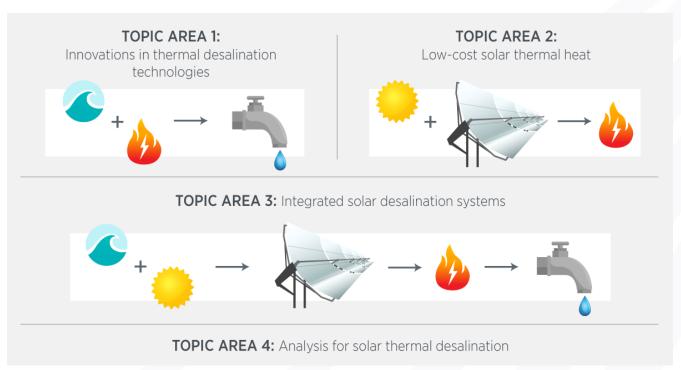
CSP Program Technical Targets

Concentrating Optics for Lower Levelized Energy Costs



Traditional Designs, 'New' Low-Cost Materials for Solar Thermal Process Heat

 Sunvapor is prototyping wood-based 'green' parabolic trough collectors (GPTC) with thermal energy storage to generate solar steam


In April 2019, Hyperlight awarded a \$6.5M project to generate process steam for a Saputo Cheese production facility

Solar Desalination Funding Program

Solar Desalination Funding Program

- Total federal funds awarded: \$21,000,000
- 14 selected projects began in Fall 2018
- Technical targets:
 - Increase thermal efficiency of desalination
 - Reduce Levelized Cost of Heat to ≤ 1¢/kWh_t
 - Achieve Levelized Cost of Water ≤ 50¢/m³

Levelized Cost of Heat for Solar Thermal Desalination

LCOH Cost Target for Solar Field, 10 Hours of Storage

Component	Current (NREL	Large	Small	
	2015)	(\$0.50/m ³)	(\$1.50/m ³)	
LCOH (\$/kWh _{thermal})	0.027	0.01	0.015	
Total direct cost (\$/m²)	350	110	180	
Site Prep (\$/m²)	30	20	10	
HTF Receiver (\$/m ²)	70	30	50	
Collector (\$/m ²)	170	45	100	
O&M (\$/m ²)	15	5	5	
Storage (\$/kWh _{thermal})	20	10	10	

CATEGORY	PRIME	PROJECT TITLE	PI	AWARD
Topic 1	UCLA	Energy Where it Matters: Delivering Heat to the Membrane/Water Interface for Enhanced Thermal Desalination	David Jassby	\$1,995,249
	U. Illinois – Urbana- Champaign	Ultra-Compact and Efficient Heat Exchanger for Solar Desalination with Unprecedented Scaling Resistance	Anthony Jacobi	\$1,584,349
	U. N. Dakota	Supercritical Treatment Technology for Water Purification	Michael Mann	\$1,999,999
	GreenBlu	High-Efficiency, Zero Liquid Discharge, Multiple-Effect Adsorption Distillation	Howard Yuh	\$1,600,000
	Fraunhofer CEI	Solar-Driven Desalination by Membrane Distillation using Ceramic Membranes	Jeffrey McCutcheon	\$800,000
	Lawrence Berkeley NL	Direct Solar-Thermal Forward Osmosis Desalination of Produced Waters	Robert Kostecki	\$800,000
	Oregon State U.	Zero Liquid Discharge Water Desalination Process using Humidification-Dehumidification in a Thermally Actuated Transport Reactor	Bahman Abbasi	\$2,000,000
Topic 2	SkyFuel	SkyTrough Vacuum Membrane: An Extreme Low-Cost Solar-Thermal Collector for Desalination	Nathan Schuknecht	\$1,598,814
	Sunvapor	Solar Steam on Demand	Philip Gleckman	\$1,500,000
	Advanced Cooling Tech.	Loop Thermosyphon Enhanced Solar Collector	Fangyu Cao	\$1,500,000
	UC Merced	Low-Cost Dispatchable Heat for Small-Scale Solar-Thermal Desalination Systems	Roland Winston	\$1,081,793
Topic 3	Natural Energy Lab. of Hawaii Authority	Hawaii SunShot Desal Project	Gregory Barbour	\$1,928,238
	Rice University	Low-Cost Desalination using Nanophotonics-Enhanced Direct Solar Membrane Distillation	Qilin Li	\$1,700,000
Topic 4	Columbia University	GIS-Based Graphical User Interface Tools for Analyzing Solar-Thermal Desalination Systems and High-Potential Implementation Regions	Vasilis Fthenakis	\$972,797

American Made Challenge: Solar Desalination

Objective: Demonstrate cost-effective solar thermal desalination technologies for early markets and applications.

Prize Structure and Features:

- Multi-phase competition, progressing from concept design through demonstration
- Will seek to connect technology developers with test facilities (government and private)

Metrics:

- Thermal Efficiency (kWh_{thermal}/m³ product water)
- Recovery Ratio (V_{product water}/V_{brine})
- Continuous Operations (Continuous hours of water production)
- Solar Efficiency (kWh_{solar}/m³ product water)
- Projected levelized cost of heat (LCOH) and water (LCOW)

- Multi-million dollar prize was announced on September 25, 2019
- Detailed prize rules to be released in early 2020

Questions?

Avi Shultz

avi.shultz@ee.doe.gov Program Manager, CSP Solar Energy Technologies Office

energy.gov/solar-office