MDSP: Research and Publications

TitleAuthorsTypeJournalPublish DateDescriptionDownloadCenter
Near-term Pathways for Decarbonizing Global Concrete ProductionJosefine A. Olsson, Sabbie A. Miller & Mark G. AlexanderPeer-reviewed ArticleNature Communications2023Growing urban populations and deteriorating infrastructure are driving unprecedented demands for concrete, a material for which there is no alternative that can meet its functional capacity. The production of concrete, more particularly the hydraulic cement that glues the material together, is one of the world’s largest sources of greenhouse gas (GHG) emissions. While this is a well-studied source of emissions, the consequences of efficient structural design decisions on mitigating these emissions are not yet well known. Here, we show that a combination of manufacturing and engineering decisions have the potential to reduce over 76% of the GHG emissions from cement and concrete production, equivalent to 3.6 Gt CO2-eq lower emissions in 2100.Read Report (paywall)mdsp
OpenConcrete: a tool for estimating the environmental impacts from concrete productionAlyson Kim, Patrick R Cunningham, Kanotha Kamau-Devers and Sabbie A MillerPeer-reviewed ArticleIOP Science2022As the increasing global consumption of concrete drives notable environmental burdens from its production, particularly greenhouse gas (GHG) emissions, interest in mitigation efforts is increasing. Yet current environmental impact quantification tools rely on user decision-making to select data for each concrete constituent, have inconsistent scopes and system boundaries, and often utilize third-party life cycle inventories. These factors limit customization or tracking of data and hinder the ability to draw robust comparisons among concrete mixtures to mitigate its environmental burdens. To address these issues, we introduce a cohesive, unified dataset of material, energy, and emission inventories to quantify the environmental impacts of concrete.Read Reportmdsp